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Ultrasonic measurements of an epoxy resin near its sol-gel transition
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Measurements of the change in attenuation and transit time of high-frequency (5 MHz) longitudinal
sound waves through an epoxy resin as it proceeds through the sol-gel transition are presented. The
transition from viscoelastic liquid to elastic solid results from the formation of permanent cross-links
and is well suited to an interpretation in terms of percolation concepts. At high frequency, the ex-
ponents k and ¢, which describe the critical behavior of the viscosity and elasticity, respectively, are
modified considerably as compared with corresponding static values, but in a manner consistent with ex-
tensions of percolation theory to the high-frequency regime. Interestingly, it is observed that at high fre-
quency, “dangling chains” appear to contribute to the elasticity, resulting in the exponent ¢ approaching

B3, that of the gel fraction.

PACS number(s): 82.70.Gg, 61.41.+¢, 62.90.+k, 05.20.—y

INTRODUCTION

The general features of the gelation transition that
occurs in many natural and man-made materials are
presently well understood. They are the result of random
bond formation in a liquid solution (sol) which leads
eventually to a highly cross-linked elastic network (gel)
which permeates the material [1,2]. Early works by Flo-
ry [3] and Stockmayer [4], and later by de Gennes [5] and
Stauffer [6], have been successful in qualitatively explain-
ing many of the features of such random bond-formation
processes. These theoretical approaches are broadly re-
ferred to as percolation theory (PT) [7] and have evolved
to describe the connectivity properties of randomly form-
ing bonds on a D-dimensional lattice. PT predicts that
upon increasing the fraction of bonds p, clusters of bond-
ed material develop until at the percolation threshold p, a
specific cluster exists which effectively spans the entire
lattice. The transition from finite to infinite is rapid and
the connectivity length, a measure of the mean cluster
size, diverges as a power law of the form £=§,Ap ",
where Ap=|p—p.|/p.. Beyond p., smaller clusters be-
come incorporated into the infinite cluster and its mass
increases rapidly. The probability that a bond belongs to
the infinite cluster (the gel fraction) vanishes on approach
to p, from above as S, =ApP?. The problem of bonds
forming randomly on a lattice has been extensively stud-
ied by computer simulations and the exponents that
characterize these divergences are well known. In three
dimensions, v=0.88 and $=0.45.

Physically, gels are classified into two extreme situa-
tions [1,8]. Weak (reversible) gels are gels in which the
fraction of bonds can be controlled by variation of one or
more thermodynamic fields, such as temperature. A
common example of a weak gel is the gelatin-water sys-
tem which is often found in many work place cafeterias.
Here the bonds form due to suppression of the tempera-
ture and can be destroyed by subtle warming. As the
bonds are reversible, the threshold is not sharply defined
and the transition from viscous liquid to elastic matter
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often exhibits frequency-dependent properties similar to
those seen in glass transitions. Further, weak gels are
often produced in the presence of a solvent which can
contribute to the dynamics. At the other extreme are
strong (irreversible) gels. Strong gels, such as epoxy
resins, form cross-links via a chemical reaction. The
cross-links so formed are permanent and stable against
changes in thermodynamic fields. This irreversibility
sharpens the threshold resulting in a transition more
nearly like that of the percolation model.

The behavior of transport properties such as the
viscosity 7 and elastic modulus G’ of substances in the vi-
cinity of the gelation threshold has been widely discussed
[9-11]. Experimentally one finds that rapid variations
occur in the transport properties on approach to p.. The
viscosity diverges as a power law below p,, as

n~Ap~ %, 1)

while the elastic modulus vanishes on approach to p,
from above as

G'=Ap'. (2)

The power-law nature of these quantities naturally sug-
gests an underlying connection to PT. However, it is im-
portant to stress that PT considers only the connectivity
properties and thus represents only the static nature of
the bonded network. It cannot by itself describe the dy-
namic behavior associated with transport quantities such
as 7 and G’ discussed above. Instead, use is commonly
made of an analogy first proposed by de Gennes [5] that
the transport properties should behave in the same way
as the conductivity of a percolating network of conduct-
ing elements. For the sol phase (p <p,) the viscosity is
thought to behave like the conductivity of a mixture of
superconductors and resistors, while for the gel phase,
the elastic modulus follows the conductivity of a mixture
of resistors and insulators. These models reproduce the
power-law features of Eqs. (1) and (2), respectively.

Although some have questioned the validity of de
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Gennes analogy [9,12], it is nevertheless an attractive ap-
proach as it allows one to bridge the gap between PT and
transport properties without needing to consider micro-
scopic details regarding the elastic nature of the bonds.
Present estimates from computer simulation for the dc
conductivity give k=k,=0.7 and t=t,=2 in three di-
mensions. The subscripts indicate exponents for the
zero-frequency case. Experimentally, these zero-
frequency exponents scatter with k, ranging from 0.7 to
1.5 and ¢, ranging from 2 to 3.8 [9]. The exponent ¢, is
generally larger than that of the gel fraction B due to the
existence of dangling chains [1]. These are polymer seg-
ments which are free at one end. Although they contrib-
ute to the mass of the infinite cluster, they do not contrib-
ute to the elasticity in the zero-frequency situation.
However, measurements of 77 and G’ are often per-
formed at some finite frequency and the exponents may
be modified considerably from those found in the static
situation above (ky=1.1+0.4 and 7,=2.9£0.9). How
these exponents are modified is the subject of the next
section, where a description of the dependence of both 7
and G’ upon frequency around the gel point is developed
using simple concepts taken from viscoelastic theory.

THEORY

In a viscoelastic medium, the complex shear modulus
G*, consists of both an elastic contribution (storage)
which is in phase with the applied stress as well as a
viscous contribution (loss) which is 90° out of phase, such
that

G*(w)=G"(w)tion(w) . (3)

This division of G* into elastic and viscous components
is illustrated in the following simple model first proposed
by Maxwell. In the Maxwell model, a viscoelastic ele-
ment is represented by a spring, with spring constant G’,
connected in series with a dashpot whose drag coefficient
is 17. The response of this element to an applied oscillato-
ry stress results in two distinct behaviors depending upon
the frequency.

In the limit of low frequency, applied stress results
mostly in the dissipation of energy into heat due to
viscous flow in the dashpot. Thus

limolG*|=an70 , (4)

where 7, is the zero-frequency viscosity.
At high frequency, applied stress is mostly stored as
elastic energy in the spring. Hence
lim |G*|=G,, , (5)
where G, is the infinite-frequency elasticity.
Between these two limits the frequency dependence of
G* is described by a response function of the form
o’ /ot +iw/o,
=g, T T ©
1+ o0 /o

where o, is the Maxwell frequency defined as

(7

Although this specific response function is special to the
Maxwell model, a review of most any standard text on
the subject of linear viscoelasticity [13] reveals that G* is
quite commonly controlled by a single characteristic fre-
quency scale. Since only one relevant frequency scale is
present, this implies that G* exhibits scaling properties
and can be expressed most generally in terms of the re-
duced variable w /o, such that

G*lio)=G dlin/w,) . (8)

One sees that the response function of the Maxwell model
given in Eq. (6) is consistent with the general scaling form
given by Eq. (8).

In the case of supercooled liquids, for example, the real
and imaginary parts of G* commonly exhibit response
functions which, although they depend strongly upon
temperature, are found to collapse about a common
curve once the frequency is scaled by a temperature-
dependent characteristic frequency. This characteristic
frequency is again given by Eq. (7), but for simple glass-
forming liquids, G, remains relatively temperature in-
sensitive while 7, grows rapidly upon cooling into the
glassy state. This leads to a characteristic frequency
which varies inversely to 7, and vanishes near the glass
transition.

For the sol-gel transition, however, w, evolves under
isothermal conditions due to the formation of clusters
leading to an extensively bonded network. Thus changes
in w, result from changes in both 7y, and G . In order to
develop a scaling approach for the sol-gel transition, an
appropriate form for the scaling function ¢(z) must be
devised which produces the experimentally witnessed
power-law behaviors of both 7 and G'. Since these two
quantities display contrasting behavior (7 diverges while
G' vanishes) on approach to p,, it is common [14,15] to
construct ¢(z) in a piecewise fashion such that Eq. (8) is
generalized as

on=G_=G ¢ _(w/w,), p<p., (9a)
G'=G,=G, ¢,(w/0.), p>p., (9b)

and the two scaling functions constrained to agree at
p=p.. From Egs. (9a) and (9b) this constraint implies

on=G', p=p,. . (9¢)

Again, since 7 and G’ exhibit opposing power-law depen-
dences away from p,, in order to satisfy Eq. (9c) both
must eventually cross over from their respective power
laws and approach p, in a Ap-independent manner [14],

on=G'=Ap®, p=p, . (10)

Response functions for 7 and G’ for the sol-gel situa-
tion can now be developed. The characteristic frequency
is again given by Eq. (7), where the zero-frequency diver-
gence of the viscosity is generalized from Eq. (1) as

—k
no=mnodp °,
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where 73=17,(p =0), and the infinite frequency elasticity
is generalized from Eq. (2) as
G.=GLap'",

where G, =G _(p=1). The characteristic frequency
vanishes on approach to p, as

G, G.LaAp'™
o =2 T=0P
©om plap to

—worp et (11)

where ¢, is the infinite frequency value of ¢, and k|, is the
zero-frequency value of k. Thus, from Egs. (9a) and (9b),

G, (0)=G ¢ (w/0,)=G' Ap' ¢, wﬂoAp"""“w
(12)
The piecewise scaling function
¢_(z)=az+bz’+ -+, p<p., (13a)
¢ (2)=1+cz '+ -+, p>p,, (13b)
¢.(z)=z", p=p, (13¢)

is proposed and shown below to yield the appropriate
behavior when the limits in both @ and Ap outlined above
[see Egs. (1), (2), (4), (5), and (10)] are applied.
For p <p., Egs. (12) and (9a) together with Eq. (13a)
result in
G_ GLAp'™

=TT e

2
+b Ap—2k°_2t°°+ L.

o
@

(14)

In the zero-frequency limit, higher-order terms in @ van-
ish, leaving
—k
no=m34p °. (15a)

However, as o increases, far from p,_, the next higher or-
der in w eventually dominates, leading to

=19 £ Ap*k"o , (15b)
@o
where k _ is defined by
ko=2ky+t, . (15¢)

For p >p,., Egs. (12) and (9b) together with Eq. (13b)
result in

G'=G,=GLAp'™ |1+¢c

0

-1
o kottw 4 ...
> ] Ap + ] .

(16)

In the limit of infinite frequency, higher-order terms
again vanish, leaving

G,=G.Ap'™ . (17a)

However, as o decreases, far from p., the second term
dominates such that

-1

G'=GL |2 | ap", (17b)
where ¢ is defined by

to=kot2t, . (17¢)

Sufficiently close to p., the power laws of both % and
G’ cross over toward a behavior independent of Ap. This
crossover is suggested by others [14] to occur when
o=w, At p=p,., Eq. (9c), together with Egs. (12) and
(13c), becomes

u

on~G'=Gl Ap'= | L Ap o '=
(o]
" —ulky+t )
=Gl || ap'= o= (18)
(2}

Again, since both 7 and G' must approach p, in a Ap-
independent fashion, Eq. (10) then constrains the ex-
ponent u, such that

t,—ulky+t,)=0

or

l—1y. (19)

Thus one finds from Eq. (18) that at p =p,, both  and G’
exhibit an anomalous power law dispersion in @ such that

=o', (20a)
G =~o". (20b)

Comparison with the literature [10,14,15] indicates
that the results of the above derivation are in many ways
similar to those of the scaling hypothesis approach, first
introduced by Efros and Shklovskii (ES) [15]. However,
the simpler approach presented here has resulted in one
key difference. In the present work, consideration of the
limiting behavior of a simple viscoelastic element has
quite naturally lead to the construction of a scaling func-
tion for G’ based upon an infinite-frequency-limit stra-
tegy. ES and others establish the scaling ansatz in terms
of a zero-frequency limit of G’. The zero-frequency ap-
proach of ES requires Eq. (12) to take the form

GB(0)=GLAp"¢, |2

0

L pAp HoTh ] , @1
(0]

with the scaling relation Eq. (13b) recast as
oS(z)=1+cz+ -, (22)

such that additional terms are truncated at zero frequen-
cy. Furthermore, the ES approach results in the funda-
mental scaling relation, Eq. (19); being replaced by
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ko=t, %—1 , (ES). (23)

Although appropriate for describing features of the low-
frequency behavior of n and G’, it is shown later that the
alternative scaling function implied by the zero-frequency
approach of ES [Eq. (22)] poses problems in the high-
frequency situation.

To summarize, the above derivation results in the fol-
lowing predicted behavior.

In the low-frequency limit,

—k 1
n=Ap °, ko=t ;—1 , D <D, (24a)
G'=Ap"°, t,=t, %+1 , P>D. (24b)
In the high-frequency limit,
—k
n=Ap 7, k,=t, %—1 » P<Pc> (25a)
G'~Ap'®, p>p, . (25b)
Near p,,
n=Ap°0* !, (262)
G'~Ap%0* , (26b)

and the crossover from the power-law behavior in Ap to
power-law dispersion in w is governed by the condition

U

1

0

—ppFotts 27)

o/o,=1 or w

In this paper, ultrasonic measurements (2—10 MHz) of
changes in the attenuation and velocity of sound in an
epoxy resin as it proceeds through the gel transition are
presented. These quantities are directly related to 7 and
G’, respectively, and are shown to display appropriate
power-law divergences on approach to the percolation
threshold as well as the appropriate dispersion at the
threshold. The measured exponents (k, ¢, and u) are
found to differ significantly from those commonly seen in
the literature. This finding only underscores the impor-
tance of the frequency dependencies of these exponents.
Instead it is shown that the measured exponents are con-
sistent with the formalism outlined above.

METHOD

Measurements of the change in attenuation and the
change in transit time of a longitudinal-acoustic-wave
pulse were performed at selected time intervals during
the cure of an epoxy resin. The epoxy chosen for this
study was diglycidyl ether of bisphenol-A (DGEBA) mar-
keted by Shell under the trade name Epon 815. The cur-
ing agent was triethylenetetramine (TETA), supplied by
Aldrich Chemicals. This particular system was selected
for its quickness of preparation as both parts are liquid at
room temperature and can be easily mixed. DGEBA has

a functionality of 2 and TETA a functionality of 6 and in
all cases stoichiometric mixtures to give approximately 8
ml volume were prepared from the reagents just prior to
measurement. For measurements above ambient temper-
ature, the separate elements were preheated to the
desired curing temperature before mixing to best achieve
isothermal conditions over the entire duration of cure.
The mixing was done manually and usually completed
within about 30 s. Immediately after mixing, the sample
was transferred into a preheated ultrasonic cell.

The ultrasonic cell consisted of an aluminum cylinder
(1 in. i.d.) into which was tightly fitted a commercially
available (Harisonics) transducer at one end (receiver)
and a 4.5-cm aluminum buffer rod at the other end ter-
minated by a second transducer (transmitter). The
second transducer was contacted to the far end of the
buffer rod by a thin layer of Dow Corning vacuum grease
and aligned by a tight-fitting brass sleeve. The length of
the buffer rod was chosen to ensure that the wave propa-
gating in the sample was in the far-field domain of the
pressure interference pattern that is created by the finite
size (0.75 in. diam.) of the ultrasonic source.

The sample was pipetted into the cell through a hole
located at the top and great care was exercised to avoid
the formation of bubbles. The sample filled a section of
the cylinder terminated by 0.66-cm-thick walls made of
Plexiglas. Plexiglas walls maintained good acoustical
coupling to the sample and allowed the final sample to be
removed and the cell reused. The exterior of these walls
and the transducer on one side and the transducer with
buffer rod on the other were acoustically bonded with a
thin layer of vacuum grease. Measurements at 2.25 MHz
were performed using a 0.65-cm path length, while mea-
surements at 5 and 10 MHz required a shorter (0.15 cm)
path length.

The entire cell, buffer rod, and transducers were held in
a clamping device and placed inside a regulated oven (£2
K). The temperature was determined from measurement
of a thermocouple which was placed in contact with the
sample but not in the path of the ultrasonic beam. All
these precautions were, however, unable to avoid a drift
of about 5 K during the initial stages (=300 s) which
arose from the exothermic nature of the chemical reac-
tion.

Measurements of the change in intensity of the re-
ceived pulse relative to a fixed reference and changes in
the transit time of this pulse were acquired automatically
at selected time intervals using a commercially available
ultrasonic system (Matec MBS-8000) interfaced to a small
computer. This system employs a phase-detection tech-
nique of which a description can be found in the litera-
ture [16].

Measurement of the absolute attenuation was not at-
tempted as it is considerably influenced by losses which
occur at the interfaces. A value of the absolute velocity
at the start of cure was obtained with an uncertainty of
+10%. Relative changes in the attenuation and transit
time, however, are accurate to about +=1%.

The propagation of longitudinal acoustic waves in a
viscoelastic medium is described by the speed of propaga-
tion v and attenuation a. These properties are related to
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the complex longitudinal modulus M*=M'+iM"" as

pP=M'=K'+34G", (28)
2pav® _ M"
—B:ZL=—;)—=§+§77, (29)

where p is the density, K’ is the volume (bulk) modulus,
G’ is the shear modulus, § is volume (bulk) viscosity, and
n=G"" /o is the shear viscosity.

As changes in the density throughout the transition are
typically less than 5%, p is regarded as a constant. Fur-
thermore, for the transition from liquid to an elastic solid
via chemical cross-linking, one anticipates that the dom-
inant contribution to changes in M * arises from changes
in the shear terms and thus the bulk terms are assumed to
be sufficiently constant. Finally, the usual assumption is
made that sufficiently close to p, the rate of bond forma-
tion is constant and that t—1,=p —p,, where t, is the
gelation time at which p=p_. Under these assumptions
one obtains

AP=G'=At", (30)
AMavd)=g~ht*, (31)

where At=|t—t,|/t,. The velocity is related to the mea-
sured initial transit time 7, and decreases in transit time
At as

~1=To A7
d d’
where d is the path length through the sample.

RESULTS

Measurements of Aa and the decrease in transit time
per unit length A7/d are shown for four curing tempera-
tures T, from 55 °C to 8 °C in Figs. 1(a) and 1(b), respec-
tively. One recognizes immediately a pronounced peak in
the attenuation occurs some period of time after mixing.
The decrease in transit time (roughly the increase in the
velocity) increases monotonically and at roughly the
same time exhibits a point of inflection. The time inter-
val at which these rapid changes occur and the width of
the transition region increases with decreasing tempera-
ture due to the higher viscosity of the initial sol, which
results in slower diffusion and hence a slower rate of bond
formation.

Such behavior is reminiscent of relaxation processes
and some [17] have also interpreted it as such. Although
there certainly exist relaxation processes which contrib-
ute to the attenuation, it is believed that the dominant
contribution will come from the macroscopic changes in
the viscosity which diverges on approach to #,. It is not-
ed that for DGEBA in the temperature range investigat-
ed (size =30 A, 7>0.1 Pa s) the rotational relaxation
frequency is of the order of 100 kHz or less and lies well
below the probe frequency of these measurements. Other
relaxation processes often witnessed in glasses and attri-
buted to localized motions of the polymer (so-called 3 re-
laxations) [18] may also contribute beyond t,; however,
these are typically much weaker processes.
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FIG. 1. (a) Change in attenuation vs. curing time at v=2.25
MHz for T=55 °C-8 °C. (b) Decrease in transit time per unit
length vs. curing time for =55 °C-8 °C.

The rise of the attenuation is analyzed in terms of Eq.
(31) by plotting Aav® vs. At in a double logarithmic plot
(Fig. 2). For lack of any better criterion, ¢, is defined as
the time where Aa reaches a maximum. In Fig. 2, one
observes evidence of a power-law behavior with
k (=k_,)=4%0.5 far from the gel point. As At ap-
proaches zero, this power law breaks down and Aav? ap-
proaches a constant independent of At, as expected when
the system crosses over into the dispersion regime near
t,.
£ The growth of the elastic modulus is depicted in Fig. 3
by the variation of Av?. Near the gel point, the data
display power-law behavior with a temperature-
independent exponent t(=t_,)=0.471+0.03. As time in-

1 03 £ T o 1
m‘n [ ] ° O\J. 54. DO:j o Eh m~..‘ 1
— CS' o4
E 102 L o
o
=
(<]
o
Z 10"} © 55°C -
mp e 35 °C k=405
= o 25 °C
< = 8°C
0 ‘
10,02 10" 10°
At
FIG. 2. Plot of Aav’® vs. At at v=2.25 MHz for

T=55 °C—8 °C. The lines represent fits of Eq. (31) at large At
with k£ =4.0%0.5.
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55 °C
45 °C
25 °C
8 °C

10'1 L 1
102 10" At 10° 10'

FIG. 3. Plot of Av? vs. At for 55°C-8 °C. The lines
represent fits of Eq. (30) with 1 =0.47+0.03.

creases far beyond z,, the power law breaks down. This
is simply a consequence of the eventual failure in the as-
sumed linear relationship between time and bond forma-
tion. Time continues without limit, but the number of
possible bonds is finite.

As an additional test the decrease of Aa that occurs
after 7, is considered. In Fig. 4 one finds that over an in-
termediate range, Aa follows a power law with an ex-
ponent of about —0.65%0.03. This decrease in attenua-
tion is presumably a direct result of the increasing elasti-
city of the medium which affects an improved transmis-
sion of sound. Assuming that the loss G'/, as expected
for an anharmonic elastic medium, approaches some con-
stant limit beyond #,, Eq. (31) indicates that Aa=~v~ 3 or
that Aa~At~ /2" from which one again obtains
t (=t,)=0.44%0.03.

It is important at this point to also stress the difference
in the behavior of the attenuation of the epoxy system
studied here which contains no solvent with that of the
gelatin-water system studied by Bacri et al. [19], for
which the solvent (water) plays a dominant role. They
observed an attenuation that remained constant below
the gel point and increased as the square of the gel frac-
tion above z,. This behavior was interpreted as a result
of the interaction of the gel with the solvent. Below 7,

10° —— -

Ao.(Np/m)

-
(=]
N

At

FIG. 4. Plot of Aa vs. At above ¢, for T=55 °C-25 °C. The
lines represent the observed power-law behavior with a
slope= —0.65+0.03.

S, =0 and the attenuation exhibited no changes on ap-
proach to #,. Beyond t,, the rise in the attenuation was
interpreted as due to the increasing resistance of the wa-
ter to flow around the gel. In contrast, no solvent is in-
volved in the present epoxy system and changes in the at-
tenuation here are seen as a direct reflection of the under-
lying percolation process.

To examine the frequency dependence, measurements
were performed at fixed temperature for three different
frequencies. In Figs. 5(a) and 5(b) the change in attenua-
tion and decrease in transit time per unit length are
shown for 2.25, 5, and 10 MHz. The attenuation has
been normalized by v? (v=w/2m) as it normally exhibits
such a dependence. Although at short times Aa/+? is
roughly the same for all three frequencies, near the gel
time an anomalous dispersion arises such that the nor-
malized attenuation decreases for increasing frequency.
Likewise in Fig. 5(b), the velocity exhibits dispersion
effects, the velocity being larger at higher frequencies.

It is also evident that ¢, (as defined by the maximum of
Aa) appears to exhibit a small frequency dependence and
occurs earlier at higher frequency. This is in conflict
with the nature of the gel point defined in PT, but may be
the result of a finite-size effect. The wavelength of the
pressure envelope of the acoustic wave establishes a
relevant length scale and is shorter at higher frequencies.
In such instances an effective percolation point can be
defined whose distance from the true p, varies as A~ !/¥
[7]. Hence, as the frequency increases the effective gel
point is shifted to times earlier than the true gel point. A
test of this would, however, require better precision in the
determination of ¢,.
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FIG. 5. (a) Change in attenuation normalized by +? for
v=2.25, 5, and 10 MHz. (b) Decrease in transit time per unit
length for v=2.25, 5, and 10 MHz.
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FIG. 6. (a) Plot of Aav’/+? at t=t, vs. frequency. The line
represents the fit to the power law described in the text with
u—1=—0.83%0.03. (b) Plot of Av? at t=t, vs. frequency. The
line represents the fit to the power law described in the text with
u=0.23+0.08.

To investigate the dispersion, the values of Aav’/v?
and Av? at t=t, are displayed as a function of the fre-
quency in Figs. 6(a) and 6(b), respectively. Aav’/+v? is
proportional to 1 and thus varies according to Eq. (20a)
as o*" From Fig. 6(a) one obtains wu—1=
—0.83+0.03, hence u=0.1710.03. The power-law
dispersion of Av? is somewhat more difficult to interpret
as the velocity changes most rapidly at =1, and thus ac-
crues large error. Nevertheless it is estimated that
G'=w" with 1 =0.23+0.08. Thus considering both the
real and imaginary parts of the shear modulus at =1,
one arrives at ¥ =0.2010.05. This exponent is consider-
ably smaller than that obtained by Adam and Delsanti
[11] for measurements of the complex shear modulus of
branched polymers in the low-frequency range (10 3-10
Hz). There they observed u =0.70£0.02, which was seen
to be consistent with their measured values of k and ¢ for
the low-frequency case of ES [see Eq. (23)]. In light of
the high-frequency regime studied here, a comparison
with the scaling relation that results from terms in w7 of
order w? (i.e., next leading order) is deemed more ap-
propriate. Inserting the experimentally determined
values of k_=4.0£0.5 and ¢, =0.47£0.03 into Eq.
(25a) and solving for the exponent u, one obtains
u =0.21%0.05, in excellent agreement with the measured
result.

Finally, the temperature dependence of the gelation
process is considered. Measurements of the viscosity of
DGEBA, performed with a Brookfield viscometer, are
shown in Fig. 7, together with the temperature behavior
of t, seen at 2.25 MHz. Both display similar Arrhenius

(s) 51 a801

loge Mpezss (P2 5)

At
c

2.6 2.8 3.0 3.2 3.4 3.6

1000/T (X)

FIG. 7. Plot of the viscosity of DGEBA (closed circles) and
t, (triangles) at v=2.25 MHz vs. inverse temperature. The lines
indicate the similar Arrhenius behavior observed for both. In-
set: The viscosity of DGEBA vs. At at the crossover point. The
line represents the power-law behavior described in the text
with ko +1,, =2.440.3.

behavior over the temperature range investigated and im-
ply that z, is mostly influenced by the initial viscosity of
DGEBA, which comprises the major portion by volume
of the mixture. Higher initial viscosity at colder temper-
ature results in slower diffusion of the TETA and DGE-
BA and hence longer time for gelation to occur.

Returning to Fig. 2, one finds that the crossover from
power-law divergence of 7 with exponent k=4 to
behavior independent of At occurs at a specific At, Az,
which increases with decreasing temperature. From Eq.
(27), this crossover at Az, is given by

SO
1
G

T =Ar° " or YTy =~AL 0" =,

where G, is assumed to vary only weakly with tempera-
ture. Furthermore, as Fig. 7 suggests that n3(7) is pro-
portional to 17 of DGEBA, one finally obtains
MpGesal T)zA’ckOHw . (32)
From Fig. 2, At, has been arbitrarily taken as At where
the extrapolation of the Az~ * and At° behaviors inter-
sect. In the inset of Fig. 7, the double logarithmic plot of
TNpcesa VS- At yields ko+t,=2.4%+0.3. Substituting
the measured values of ¢,=0.471£0.03 and
ko+t,=2.4%0.3, into the scaling relation [Eq. (24a)]
one finds u =0.20%0.04, again in good agreement with
the measured result.
The primary finding of this study is that the exponents
k and t are significantly modified at higher frequencies.
The exponent k is significantly larger than that of the
static situation, while the exponent ¢ is much lower. Fur-
thermore, it is seen that the measured value of ¢ is compa-
rable to that of the gel fraction, 3=0.45, and suggests
that at high frequencies the elastic modulus grows in
direct proportion to the growth of the infinite cluster.
This implies that while in the static case dangling chains
do not contribute to the shear modulus, they do contrib-
ute at higher frequencies. This is more obvious in the sit-
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uation of the conductivity of a metal cluster. Although
charge carriers cannot flow through a dangling chain
they can oscillate within one.

It is the author’s contention that the observed trends in
k and ¢ are simply a reflection of the behavior of the scal-
ing function when o is increased. More importantly, the
specific form which these functions take depends inti-
mately upon the limiting strategy chosen. To pursue this
idea further, the scaling function which describes the
behavior of the elasticity is considered in more detail.

In the limiting strategy which arose from simple
viscoelasticity concepts, ¢ (z) was chosen such that a
limit to infinite frequency truncates the expression leav-
ing only the first term. This strategy differs considerably
with that practiced in the scaling hypothesis approach
(ES) in which a limit to zero frequency is applied. In
light of the derivation presented earlier, I find no reason
for preferring such a zero-frequency-limit approach.
Nevertheless, consider the consequence of adopting that
alternative limiting strategy. In that situation, Eq. (21)
together with Eq. (22) reduce to

GIES:G(I)AP fo

14c |2
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where t, is the zero-frequency limit of ¢. In the low-
frequency limit, higher-order terms in this expression are
truncated leaving the expected vanishing behavior of G'.
In the high-frequency limit, however, the dominance of
higher-order terms would lead to a situation in which G’
diverges on approach to p.. This is clearly not observed in
the present measurements, as Av? is seen to decrease as L,
is approached from above.

Further support in favor of the present limiting stra-
tegy comes from consideration of the various scaling rela-
tions which result. Equation (24b), for example,
expresses the vanishing of G’ in the low-frequency limit.
Assuming that the measured u =0.20%0.05 is valid at
low frequencies, Eq. (24b), with ¢ =[(3=0.45, would
yield a low-frequency elasticity that vanishes with a
larger exponent, t,=2.91+0.5. This value is consistent
with the range of experimental results obtained at low
frequencies including those of Adam and Delsanti, who
obtained 3.2+0.5. Similarly, one finds from Eq. (24a)
that the low-frequency limit for k is kq=1.8%0.5 in
rough agreement with present estimates found in the
literature.

One may argue that terms beyond the second term in
¢..(z) should also eventually dominate. It can only be as-
sumed that there is some physical reason for which only
the first-order corrections are sufficient. In any event, al-
though the scaling relations would be altered, the limiting

procedure would still result in k increasing with increas-
ing frequency while ¢ decreases, as has been observed.
The limiting procedure chosen above indicates that it is
the exponent associated with the high-frequency limit of
the elasticity which is the least ambiguous. It is en-
couraging that the present measurements indicate that
this exponent is close to that of the gel fraction S3.

SUMMARY

The present work represents an attempt to interpret
the results of ultrasonic measurements of a gelling epoxy
resin in terms of PT. It represents also experimental evi-
dence of what happens to PT in other than the zero-
frequency limit and indicates that modest extensions of
the conductivity analogy for transport properties is suc-
cessful in describing the observed variations in all the
measured exponents. It is observed that at higher fre-
quency, higher-order terms contribute significantly to the
transport exponents, with the result that k is generally in-
creased, while ¢ decreases and may even be approaching 3
in the limit of infinite frequency. This implies that high-
frequency acoustic waves are influenced by all of the
infinite cluster, including the dangling chains. If so, the
present work has achieved a reduction in the number of
exponents as ¢, can now be replaced by the PT exponent
B which arises solely from connectivity properties of the
gel.

Both exponents (k and t) are shown to be consistent
with the measured exponent that describes the dispersion
at the threshold, when terms in a)nz(oz are retained. For
the analogous case of conductivity in the metal-dielectric
system, Efros and Shklovskii suggest that the o’ depen-
dence is due to the dissipation of energy from isolated
metal clusters. Hence the metal clusters behave roughly
like oscillating antennae radiating away photons of elec-
tromagnetic energy. Possibly one could likewise envision
clusters of bonded epoxy which after interacting with the
incident acoustical wave (essentially an ensemble of pho-
nons) radiate away acoustical energy in the form of pho-
nons.

A physical mechanism for the 1/ dependence of G’ at
low frequency is missing at present, but may be found in
the “flicker” or “1/f noise that is often observed at low
frequency in many amorphous systems [20].
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